If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+3x-960=0
a = 2; b = 3; c = -960;
Δ = b2-4ac
Δ = 32-4·2·(-960)
Δ = 7689
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{7689}}{2*2}=\frac{-3-\sqrt{7689}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{7689}}{2*2}=\frac{-3+\sqrt{7689}}{4} $
| 4(y+2)-5(2y+1)=3y+1 | | (3y-5)/(2)–(y/3)=5 | | 4x=30+2xx | | 25z^2=10z | | (y-4)/(y+5)=2/3 | | -6x+5+12x-6=31 | | -6x+5+12x-6=30 | | 5(6)-cc=7 | | 3x^+4x-5=0 | | −43f=45 | | 5=z-5 | | 10x-60=60 | | (5y-9)(5-y)=0 | | 5x-28=3x+2(x-4) | | 6x+12+-12=0 | | 6x+12-+-12=0 | | 2x-35=19+x-20 | | 2=10=(x-2) | | 4x9=27 | | --7w-5-7w+9= | | 2y+5=25, | | 1/x=x2/36 | | 8/x=x/121/2 | | 23x+5=62 | | 0=8x+1 | | 5x+11=16x+18 | | 5/4=(x+2)/6 | | 7m-7-6m-6-16=1+4m | | 4+a/11=47 | | 4+a/11=49 | | c=0.75c-14 | | c=0.75c-8 |